极速天气 资讯 小学数学压轴几何图形经典30题(含解析),学习重点要记牢!

小学数学压轴几何图形经典30题(含解析),学习重点要记牢!

01

几何易错知识点

一、线、角

大小有关,叉得越大角就越大。

(1)平角的两边是射线,平角不是直线。

(2)三角形、四边形中的角的两边是线段。

(3)圆心角的两边是线段。

二、 三角形

三、 正方形面积

四、三角形、四边形的关系

五、圆

把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。则长方形的面积等于圆的面积,长方形的周长比圆的周长增加r×2。

半圆的周长等于圆的周长的一半加直径。

半圆的周长公式:C=pd¸2+d或C=pr+2r

在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

六、圆柱、圆锥

把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。

如果把圆柱的侧面展开,得到一个正方形,那么圆柱的底面周长和高相等。

把一个圆柱沿着半径切开,拼成一个近似的长方体,体积不变,表面积增加了两个面,增加的面积是r×h×2。

把一个圆柱沿着底面直径劈开,得到两个半圆柱体,表面积和比原来增加了两个长方形的面,增加的面积和是d×h×2。

把一个圆柱加工成一个最大的圆锥,那么圆柱与圆锥等底等高,削去的圆柱的体积占圆柱体积的, 削去的圆柱的体积占圆锥体积的2倍。

把一个圆柱截成几段,增加的表面积是底面圆,增加的面的个数是:截的次数×2。

02

几何图形九大解法

分割法

▌例1:将两个相等的长方形重合在一起,求组合图形的面积。(单位:厘米)

解:将图形分割成两个全等的梯形。

S组=(7-2+7)×2÷2×2=24(平方厘米)

▌例2:下列两个正方形边长分别为8厘米和5厘米,求阴影部分面积。

解:将图形分割成3个三角形。

S=5×5÷2+5×8÷2+(8-5)×5÷2=12.5+20+7.5=38(平方厘米)

▌例3:左图中两个正方形边长分别为8厘米和6厘米。求阴影部分面积。

解:将阴影部分分割成两个三角形。

S阴=8×(8+6)÷2+8×6÷2=56+24=80(平方厘米)

添辅助线

▌例1:已知正方形边长4厘米,A、B、C、D是正方形边上的中点,P是任意一点。求阴影部分面积。

解:从P点向4个定点添辅助线,由此看出,阴影部分面积和空白部分面积相等。

S阴=4×4÷2=8(平方厘米)

▌例2:将下图平行四边形分成三角形和梯形两部分,它们面积相差40平方厘米,平行四边形底20.4厘米,高8厘米。梯形下底是多少厘米?

解:因为添一条辅助线平行于三角形一条边,发现40平方厘米是一个平行四边形。

所以梯形下底:40÷8=5(厘米)

▌例3:平行四边形的面积是48平方厘米,BC分别是这个平行四边形相邻两条边的中点,连接A、B、C得到4个三角形。求阴影部分的面积。

解:如果连接平行四边形各条边上的中点,可以看出空白部分占了整个平行四边形的八分之五,阴影部分占了八分之三。

S阴=48÷8×3=18(平方厘米)

倍比法

▌例1:已知OC=2AO,SABO=2㎡,求梯形ABCD的面积。

解:因为OC=2AO,所以SBOC=2×2=4(㎡)

SDOC=4×2=8(㎡)

SABCD=2+4×2+8=18(㎡)

▌例2:已知S阴=8.75㎡,求下图梯形的面积。

解:因为7.5÷2.5=3(倍)

所以S空=3S阴

S=8.75×(3+1)=35(㎡)

▌例3:下图AB是AD的3倍,AC是AE的5倍,那么三角形ABC的面积是三角形ADE的多少倍?

解:设三角形ADE面积为1个单位。

则SABE=1×3=3 SABC=3×5=15

所以三角形ABC的面积是三角形ADE的15倍。

割补平移

▌例1:已知S阴=20㎡,EF为中位线求梯形ABCD的面积。

解:沿着中位线分割平移,将原图转化成一个平行四边形。从图中看出,阴影部分面积是平行四边形面积一半的一半。

SABCD=20×2×2=80(㎡)

▌例2:求下图面积(单位厘米)。

解1:S组=S平行四边形=10×(5+5)=100(平方厘米)

解2:S组=S平行四边形=S长方形=5×(10+10)=100(平方厘米)

▌例3:把一个长方形的长和宽分别增加2厘米,面积增加24平方厘米。求原长方形的周长。

解:C=(24÷2-2)×2=20(厘米)

等量代换

▌例1:已知AB平行于EC,求阴影部分面积。

解:因为AB//EC

所以S△AOE=S△BOC

则S阴=0.5S长方形=10×8÷2=40(㎡)

▌例2:下图两个正方形边长 分别是6分米、4分米。求阴影部分面积。

解:因为S1+S2=S3+S2=6×4÷2

所以S1=S3

则S阴=6×6÷2=18(平方分米)

等腰直角三角形

▌例1:已知长方形周长为22厘米,长7厘米,求阴影部分面积。

解:宽=22÷2-7=4(厘米)

S阴=(7+(7-4))×4÷2=20(平方厘米)

或S阴=7×4-4×4÷2=20(平方厘米)

▌例2:已知下列两个等腰直角三角形,直角边分别是10厘米和6厘米。求阴影部分的面积。

解:10-6=4(厘米) 6-4=2(厘米)

S阴=(6+2)×4÷2=16(厘米)

▌例3:下图长方形长9厘米,宽6厘米,求阴影部分面积。

解:三角形BCE是等腰三角形

FD=ED=9-6=3(厘米)

S阴=(9+3)×6÷2=36(平方厘米)

或S阴=9×9÷2-3×3÷2=36(平方厘米)

扩倍、缩倍法

▌例:求左下图的面积(单位:米)。

解:将原图扩大两倍成长方形,求出长方形的面积后再缩小两倍,就是原图形面积。

S=(40+30)×30÷2=1050(平方米)

代数法

▌例1:图中三角形甲的面积比乙的面积少8平方厘米,AB=8cm,CE=6cm。求三角形甲和三角形乙的面积各是多少?

解:设AD长为Xcm。再设DF长为Ycm。

8X+8=8(6+X)÷2

X=4

4Y÷2+8=6(8-Y)÷2

Y=3.2

S甲=4×3.2÷2=6.4(c㎡)

S乙=6.4+8=14.4(c㎡)

▌例2:下图是一个等腰三角形,它的腰长是20厘米,面积是144平方厘米。在底边上任取一点向两腰作垂线,得a和b,求a+b的和。

解:过顶点连接a、b的交点。

20b÷2+20a÷2=144

10a+10b=144

a+b=14.4

看外高

▌例1:下图两个正方形的边长分别是6厘米和3厘米,求阴影部分的面积。

解:从左上角向右下角添条辅助线,将S阴看成两个钝角三角形。(钝角三角形有两条外高)

S阴=S△+S△

=3×(6+3)÷2+3×6÷2

=22.5(平方厘米)

▌例2:下图长方形长10厘米,宽7厘米,求阴影部分面积。

解:阴影部分是一个平行四边形。与底边2厘米对应的高是10厘米。

S阴=10×2=20(平方厘米)

03

30道典型几何题解析

end

声明:本文内容来源于网络,转载请联系原出处。封面图片来自邑石网。奥数网尊重版权,如有侵权问题,请及时与管理员联系处理。

喜欢就点个“在看”哦~

本文来自网络,不代表本站立场,转载请注明出处:https://www.jsu173.com/alarm/a62000.html

圆柱,正方形,直线,长度,长方形,经典,数学,三角形,重点,面积,圆柱,四边形,平方厘米,三角形,面积

极速天气后续将为您提供丰富、全面的关于圆柱,正方形,直线,长度,长方形,经典,数学,三角形,重点,面积,圆柱,四边形,平方厘米,三角形,面积内容,让您第一时间了解到关于圆柱,正方形,直线,长度,长方形,经典,数学,三角形,重点,面积,圆柱,四边形,平方厘米,三角形,面积的热门信息。小编将持续从百度新闻、搜狗百科、微博热搜、知乎热门问答以及部分合作站点渠道收集和补充完善信息。